Thermal Noise and Design of
the GQUEST Interferometer

Daniel Grass
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Actual Design
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This “noise budget” contains the dominant noise sources in the GQUEST

interferometer
We are dominated by bulk thermal noise from the optics



Solid Normal Mode Noise
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* Each mirror has tiny vibrations, which change the measured length of the arm
e 2 ways of calculating the noise: susceptibility method and eigenmode

decomposition



Solid Normal Modes




Susceptibility Method

* Solid Normal Noise can be modeled by treating the laser as a force
and considering the power dissipated, “susceptibility method”

* This relies on the fluctuation-dissipation and equipartition theorems
e Uses the “admittance” from the laser beam modeled as a force
* Easier computationally, but less direct
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More on the Susceptibility Method

e Admittance = 1/impedance
* The real part is the dissipative term, like a resistance
* This is similar to Johnson-Nyquist noise



Eigenmode Decomposition Theory

W=l ( [gd Press F1 for more help.

Eigenfrequency=9.3526E6 Hz Surface: Displacement field, Z component (m) o

genfrequency=9.3526E6 Hz Surface: Displacement field, Z component (m) o

* The mirror has (many)
eigenmodes

* Each eigenmode displaces
the mirror surface, which
affects the phase of the
light and looks like signal

* The strength of the noise
from each eigenmodes is
proportional to the
overlap integral of the
beam and the eigenmode

* Equipartition Theorem
used here as well




What are these modes?
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Longitudinal (scalar potential)
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Eigenfrequency=1.07E7 Hz Surface: Displ field, Z it (m)

Transverse (vector potential)
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Eigenmode Decomposition Math

K indexes over both mode types and all 3 axes
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What is the coupling for longitudinal modes?
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Analytic Estimation for constant K
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Final Analytic Estimation

* Consider noise half-way between resonances, which is where we will
look for the signal

* Evaluating the integral from the last slide and doing some algebra
yields the following
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Limit 1 on SNM minimization  SPan(Q) =

m3Q) Y sw?()
* Optic cannot be too thin, or coating
stress becomes too problematic
1( Y;:h* oho(1-vs)
rcurv ~ - ’ D ~ 12 2
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Surface: Displacement field, Z,ggTB&fént(m) a Surface: Displacement field, Z component (m) 2
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Limit 2 on SNM minimization — gpaw ) — __10kelh

By
T QY w0

e Optic cannot be too stiff, or modes with 1017
transverse components couple in at '
higher frequencies
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Coating Thermal Noise

* Need a coating on an optic to make it reflective

)

e Often very thin and made up of alternating layers, a “Bragg coating’

* Brownian noise is due to mechanical fluctuations, just like the bulk
thermal noise, but the coating layer is much thinner so this noise
presents differently

Incident beam Reflected beams

Air, n=1

n(high)
n(low)
n(high)
n(low)
n(high)
n(low)

Substrate, n,

(https://www.emf-corp.com/optical-coatings/dielectric-bragg-mirrors/)
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High Frequency Coating Thermal Noise

* Almost all existing work has been done is a quasistatic limit, where
the measurement frequency is much less than the first bulk
eigenmode

* Have a basic model of how to unify coating and bulk thermal noise



Design Implications

* Bragg Coatings have a low Quality Factor

* This is a fundamental limit on the combined quality factor for the
whole mirror

* Goal for us is to hold the optic with less dissipation than in the
coating
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Thermorefractive Noise

* The index of refraction of silicon, like many materials, is temperature dependent
* The index of refraction changes the optical path length of the transmitted arm
* Optics have microscopic temperature fluctuations due to diffusion

* Noise is present where the light goes through an optic, so just the beamsplitter
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Charge Carrier Thermal Noise

 Similar to thermorefractive noise, except here the index of refraction
depends on the density of charge carriers, i.e. electrons

* This noise source is constant in frequency up to 200 GHz, although it
also experiences the beam splitter transfer function
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Beam Splitter Transfer Function

* Property inherent to Michelson Interferometer: noise and signals at
the beam splitter (very nearly) go away at the FSR (1/light travel time)
of the arms

e Can be derived by considering the how light with different phase gets
recombined at the beamsplitter

H(Q) = COS2(@) <1

c =



Thermoelastic noise

e Similar to thermorefractive noise, but now we are considering the

coefficient of thermal expansion instead of the thermorefractive
coefficient

* Present at all optics
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Noise Budget (again)
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Thermal Lensing

* Not a noise source but an important technical limitation
* The beam splitter absorbs some of the 10 kW going through it
* This introduces a temperature gradient

* Due to the temperature dependence of the index of refraction, this
effect lenses light going through the beam splitter

* Need light that is reflected and transmitted to “mode match”

2 \
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< ASdefect — AdefectP BS.

Simonelli et al, 2019 25



Why Silicon?

* High thermal conductivity

o Stiff

* High Q at 17 MHz
* Lots of R&D previously done

* Good synergy with future detectors

e Drawbac
e Drawbac

e Drawbac

K #1: need use 1550 nm light
kK #2: semiconductor effects

K #3: birefringence



Thank youl!



